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SUMMARY

A technique of fluctuation analysis is introduced for the identification of characteristic length scales in
spatial models, with similarities to the recently introduced methods using correlations. The identified
length scale provides the optimal size to extract non-trivial large-scale behaviour in such models.
The method is demonstrated for three biological models: genetic selection, plant competition and a
complex marine system; the first two are coupled map lattices and the last one is a cellular automaton.
These cover the three possibilities for asymptotic (long time) dynamics: fixation (the system converges
to a fixed point); statistical fixation (the spatial statistics converge to fixed values); and complex
statistical structure (the statistics do not converge to fixed values). The technique is shown to have
an additional use in the identification of aggregation or dispersal at various scales. The method
is rigorously justifiable in the cases when the system under analysis satisfies the FKG (Fortuin–
Kasteleyn–Ginibre) property and has a fast decay of correlations. We also discuss the connection
between the fluctuation analysis length scale and hydrodynamic limits methods to derive large scale
equations for ecological models.

1. INTRODUCTION

The importance of spatial models in ecological sys-
tems has become clear over the last few years. Whilst
many studies have used continuous systems (such as
reaction–diffusion equations) or implicit spatial sys-

tems (patch models), discrete models are becoming
increasingly popular for modelling biological popu-
lations. Reviews of these alternative types of spatial
models include Czárán & Bartha (1992) and Dur-
rett & Levin (1994a). Discrete biological models have
primarily been probabilistic cellular automata or in-
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teracting particle systems (Weiner & Conte 1981;
DeRoos et al. 1991 and Levin & Durrett 1996).
In contrast to cellular automata, which take dis-
crete values on a discrete grid, coupled map lattices
deal with continuous variables; examples of biologi-
cal applications of these models include Hassell et al.
(1991) and Solé & Valls (1991).

An important problem in biological modelling and
data collection, highlighted by the use of spatial mod-
els, is that of the establishment of length scales. It is
well known that in spatially extended systems many
different spatial scales can be important. For exam-
ple, there are interactions between neighbouring indi-
viduals and there are dynamics on population, com-
munity and ecosystem scales. Therefore, an impor-
tant issue in the study of mathematical or computa-
tional spatial models is the identification of spatial
scales intrinsic to the system. The use of a discrete
lattice introduces three imposed length scales. The
cell size is the smallest of these length scales and
may be related to the size, or area of direct influ-
ence of a sessile organism, or the space covered by a
motile individual in a fixed interval of time. The size
of the neighbourhood, usually defined in terms of the
cell size, is the range over which biological interac-
tions occur. The largest imposed scale is the length
of the system (L), which gives the total number of
cells as Ld (where d is the dimension of the spatial
model, usually d = 2). All of the above are a priori
length scales, set up as the assumptions of a model.
An important a posteriori length scale would be the
emergent scale at which the dynamics progress. This
has usually been approximated by the classical cor-
relation length. The classical correlation length is the
separation distance D such that the correlations be-
tween two sites at distance r decays as e−r/D for large
r. Unfortunately this is difficult to measure and often
a definite answer cannot be obtained.

In this paper the coherence length scale (`c) is in-
troduced and analysed. This length scale corresponds
(in the way described below) to the one introduced
by Rand & Wilson (1995). For ‘windows’ of a much
smaller size than `c there are strong correlations be-
tween the individual sites, while disjoint windows of
a much larger size are statistically independent. It is
desirable to average the data over the boxes of the
size of the coherence length `c. If the data is averaged
over smaller boxes the observed non-trivial dynamics
may be too complicated, and if the data is averaged
over larger boxes any non-trivial dynamics will be
averaged out. It should be pointed out that, in order
to rigorously justify the method that we use, we need
a sufficiently fast (e.g. exponential) decay of correla-
tions; so, from the mathematical point of view, one
is not completely freed from analysing the decay of
correlations using this approach. On the other hand,
using the method developed here numerically, `c is
typically easily determined, and the prescription that
we give does not involve calculating the correlation
length. Throughout this work we are assuming that
the system size (L) is sufficiently larger than the size
of the window (`c) so that boundary effects are neg-
ligible. Actually in all simulations shown here the

system size is always greater than twice the largest
averaging window size.

The length scale problem has been addressed by
a few authors, such as Wiens (1989), DeRoos et al.
(1991), Wissel (1991), Levin (1992), Rand & Wil-
son (1995) and Rand (1994). This paper presents a
method for determining the coherence length scale
of spatially extended models, using the analysis of
fluctuations at varying scales. The method is applied
to three examples, of which one is a probabilistic cel-
lular automaton, one is a coupled map lattice and
one is a hybrid between a probabilistic cellular au-
tomaton and a coupled map lattice; this technique
has also been successfully applied to other systems
(Rand et al. 1995; Hendry & McGlade 1995; Keeling
& Rand 1996; Keeling 1997). All of the models use
toroidal grids (periodic boundary conditions), space
discretized into square cells and synchronous updat-
ing, although these conditions are not essential for
the method described: in fact asynchronous updating
allows the formulation of many analytical results on
spatially extended models (see Liggett 1985). These
examples demonstrate different types of behaviour.
The first model is the simplest: every tested initial
condition approaches an invariant equilibrium con-
figuration at long times, although the configuration
depends on the initial conditions. We call this type
of model system with fixation. The second model dis-
plays asymptotic statistical structure that is constant
in time (i.e. the invariant measure to which the sys-
tem converges is ergodic, see Appendix 1), and we
call it a system with statistical fixation. The final ex-
ample shows more complex asymptotic statistics and
the invariant measure to which the system converges
is not ergodic. These descriptions are based on our
numerical simulations. Unfortunately, none of them
can be justified rigorously for the systems we study,
due to their complexity.

The next section presents the theory and numeri-
cal treatment for systems with fixation and statis-
tical fixation, before extending the ideas to mod-
els with complex statistics. This brings out one of
the main differences between our study and the pre-
vious work of Rand & Wilson: for stationary and
statistically stationary systems the two approaches
are similar—the length scale is calculated using the
global average density µ. But, for systems that ex-
hibit non-trivial dynamics of average quantities at
some scale, we use the theory of nonlinear predic-
tion (see Casdagli 1989). The theory consists of a
semi-heuristic approach based on treating neighbour-
ing sites as independent random variables, and a
more rigorous treatment, using the FKG (Fortuin–
Kasteleyn–Ginibre) property that some coupled map
lattices and probabilistic cellular automata possess
(see Mezić 1997). In particular, we show that our
genetic selection model possesses the FKG property.
In § 3 the models are introduced. The results of the
application of the coherence length scale technique
are presented and discussed in § 4. In § 5 we provide
a connection between the length scale, `c, and mod-
elling. This connection arises by observing that this
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length scale determines the size of almost indepen-
dent windows, and linking this to the hydrodynamic
analysis of the type used by Durrett & Levin (1994b).
For this purpose, we perform fluctuation analysis on
the same system that Durrett & Levin used in their
study: the spatially extended hawk–dove game. The
paper ends with the discussion of results in § 6, and
three mathematical appendices.

2. THE FLUCTUATION ANALYSIS
METHOD

(a) Systems with fixation and statistical fixation

Let us first introduce the definitions for fixation
and statistical fixation. Fixation means that, asymp-
totically in time, the system approaches a fixed point.
Different spatial structures of the asymptotic config-
uration can be achieved by starting from different
initial conditions. Statistical fixation means that, af-
ter transients, the system moves randomly through
different configurations, but each of these configu-
rations has statistically the same spatial structure.
A more precise definition is that, asymptotically in
time, the distribution of a system converges to an
invariant ergodic measure (see Appendix 1).

The identification of the coherence length scale, `c,
can be approached by analysing the fluctuations aris-
ing at different spatial scales. Our models are defined
on the lattice Z2, but all the theoretical considera-
tions are valid for systems on Zd, as well. To each
site i ∈ Zd we can assign a number xi = V (i) that
denotes the state of the system at that site. V is a
function V : Zd → R or V : Zd → Z. We are going
to call x = {xi, i ∈ Zd} a configuration.

For any configuration ξ the spatial average A`(ξ),
on a window of size `d, is

A`(ξ) =
1
`d

∑
i∈W`

xi.

Consider the long-term time average of AL,

µ = lim
T→∞

1
T

t0+T∑
t=t0

AL(ξ(t)) = 〈AL〉t,

where L is the system size, and angled brackets de-
note long term averages. Assuming ergodicity of the
process,

µ ≡
∑
ξ

AL(ξ)ν(ξ),

where ν is the invariant measure of the system (see
Liggett 1985). Note that the ergodicity of the sys-
tem does not necessarily mean the ergodicity of its
invariant measure, as explained in Appendix 1. In
the case of systems with more than one asymptotic
limit (which depends on initial conditions), we either
need to perform an average over all initial conditions,
or else treat the different basins of attraction of the
measure separately.

We analyse the fluctuations of A` about µ for vari-
ous window sizes ` by investigating the scaling of the

standard deviation E`,

E` = 〈[A`(ξ(t))− µ]2〉t1/2.
When ` is such that the windows are independent,
it is reasonable to ask if the central limit theorem
applies. In that case E` should scale as

√
1/`d when

` is large enough. In applications we will check if this
is true by plotting a graph of

X` =
√
`dE`,

against `. We call this graph a fluctuation diagram.
The coherence length scale, `c, is defined to be the
point where X` asymptotes to a constant value (see
figures 2, 4, 7 and 8). Let us now consider how the
change of X` can be interpreted in terms of the spa-
tial structure. We shall show that increases in X`

correspond to aggregation and decreases to disaggre-
gation.

If we assume

X2
`+1 > X2

` ,

then
1

(`+ 1)d
var(S`+1) >

1
`d

var(S`).

Note that the variance in the sum over a window
(S` = `dA`) can be decomposed into the variance at
each point and the covariance between points,

var(S`) =
∑
i∈W`

var(xi) +
〈 ∑

i6=j
i,j∈W`

xixj

〉
.

Because we assume spatial homogeneity v = var(xi)
is independent of i, we can deduce:

1
(`+ 1)d

[
(`+ 1)dv +

〈 ∑
i6=j

i,j∈W`+1

xixj

〉]

>
1
`d

[
`dv +

〈 ∑
i6=j

i,j∈W`

xixj

〉]

=⇒ 1
(`+ 1)d

∑
i∈W`+1

cov(xi, S`+1 − xi)

>
1
`d

∑
i∈W`

cov(xi, S` − xi).

This implies that when X` is increasing the average
covariance between a site and the rest of the window
(a measure of aggregation) also increases with win-
dow size; the converse also holds. Thus if X` > X1
the sites are aggregated at this scale as the value of
the window lies further from the mean, on average,
than a distribution of sites using the invariant mea-
sure ν predicts.

It is interesting to discuss these results in terms
of renormalization theory. In particular, the change
of X` as we increase ` gives us some indication of
how the system changes if we look at it at larger and
larger scales. A typical example of a fluctuation di-
agram shows X` increasing with ` and then asymp-
toting to some constant value (see figure 2). This
constant value indicates how much variance is left in
the renormalized state of the system, where each big
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window of size ` is one site. For very large ` the sys-
tem is completely uncorrelated, i.e. the neighbouring
windows are independent, and lim`→∞X` = c. For
a system in which the neighbouring sites are com-
pletely independent, X` is a constant which does not
depend on `. But for a system that looks the same at
all scales, this should also be true. Thus we expect
the fluctuation analysis to suggest the cases in which
the asymptotic state of the system has a self-similar
structure on all scales. It is necessary to point out
that this vague criterion is based only on analysing
the second moment of the renormalized distribution,
and for a proper proof of self-similarity one would
have to consider how the whole distribution changes
as we increase the length scale (see, for example,
Sinai 1976). But one is typically faced with unsur-
mountable technical problems when trying to estab-
lish the self-similarity for complicated multispecies
systems. In this sense the above heuristic discussion
can be useful.

(b) Systems with complex statistics

We now consider systems in which the behaviour of
the averaged quantities in the finite window cannot
be described as random fluctuations around a global
average. As we increase the size of the averaging win-
dow, such a system asymptotes to a state in which
independent windows exhibit non-trivial dynamics—
dynamics which are not just fluctuations around the
global average, but have a non-trivial deterministic
component to them. As we increase the size of the
measurement window even more, we start averag-
ing over different, almost independent, dynamics. As
these dynamics are not in phase, we get closer and
closer to some global average, µ. In short, globally
the system exhibits average values constant in time,
while on some intermediate scale, `c, the average val-
ues show non-trivial deterministic behaviour.

When dealing with this more complex behaviour,
Rand & Wilson (1995) have proposed to consider
the deviation from the infinite system average, µ, to
identify the scale at which the dynamics occur, as
done for the stationary and statistically stationary
systems in the previous sections of this paper. We
propose that an improvement in the identification of
the intermediate scale, `c, can be obtained when we
consider the details of the deterministic dynamics in
the window. We assume that the dynamics in the
window of the size `c can be approximated by the
deterministic rule

µ(t+ τ) = F (µ(t), µ(t− τ), . . . , µ(t− nτ)), (1)

for some integer, n. For the systems treated in the
previous section µ(t) = µ. We consider the fluctua-
tion

E` = 〈[A`(x(t))− µ(t)]2〉1/2t ,

and check if it starts scaling as
√

1/`d at the length
scale `c, in accordance with the central limit theorem.

In the practical implementation of the method de-
scribed above, we use prediction algorithms for time
series as our function F (see Casdagli 1989). This

prediction may require the values of several previous
states and so we define

B`(x(t))
= (A`(x(t)), A`(x(t− τ)), . . . , A`(x(t− nτ))).

For each window size, assuming the dynamics have
underlying determinism, it is possible to calculate a
predictor function, F̃` using one of the standard tech-
niques, for example radial basis functions (Casdagli
1989) or by comparison to past values.

F̃`(B`(x(t− τ))) ≈ A`(x(t)).

The accuracy of the predicting function will increase
with the size of the learning set (the set of B values
used to calculate the function), and as this becomes
large the fluctuation will tend to the previous form.

E` = 〈[A`(x(t))− F̃`(B`(x(t− τ)))]2〉1/2t ∝
√

1/`d.

The remainder of the calculation follows as before,
finding the characteristic length scale by comparing
X` with `. The assumption that there is an under-
lying deterministic system at the coherence length
scale `c can be checked by comparing E`c with

E′`c = 〈〈[A`c(x(t1))− F̃`c(B`c(x(t2 − τ)))]2〉t1〉1/2t2 ,

which is the average distance between all predicted
points and all actual points. If E`c � E′`c then the
dynamics closely follow the orbit predicted by F̃ , oth-
erwise either all the fluctuations over the window are
due to noise or the method of prediction has insuffi-
cient accuracy.

As pointed out above, this result is related to the
length scale proposed by Rand & Wilson (1995), with
the exception that the reference average in the fluc-
tuation analysis done by these authors is the global
average, and the averaging is performed over a finite
time interval. Averaging for finite time T in our case,
we obtain a result similar to Rand & Wilson (1995):

E` = 〈[A`(x(t))− F`(B`(x(t− τ)))]2〉1/2t

∝ c0(T ) +
√

1/`d,

where c0(T ) → 0 as T → ∞, if the deterministic
dynamics are chaotic.

(c) Systems with FKG property

Note that the above derivations rely essentially on
the fact that the analysed systems satisfy the condi-
tions for the central limit theorem to hold. The cen-
tral limit theorem would hold if we could treat the
value at each site as an independent random variable.
But this is typically not true. What is true, most
commonly, is that the correlations between sites de-
cay exponentially fast; however, there are very sim-
ple models that are exceptions, e.g. the voter model
in one dimension, described for example in Liggett
(1985). If the correlations decay sufficiently fast, so
that∑
k∈Zd

cov(x0, xk) <∞,
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p′ij =
αpi,jΣi,j + 1

2βpi,j(1−Σi,j) + 1
2β(1− pi,j)Σi,j

αpi,jΣi,j + 1
2βpi,j(1−Σi,j) + 1

2β(1− pi,j)Σi,j + γ(1− pi,j)(1−Σi,j)
, (2)

and the system has the so-called FKG property, New-
man (1980) has shown that the central limit theorem
is satisfied. In that case the discussion above becomes
rigorous. The FKG property and its relevance to the
length scale problem is examined in Appendix 2. The
FKG inequalities (or the preservation of those) are
typically easy to verify analytically for the types of
systems that we study here. It is the decay of corre-
lations and the convergence to an invariant measure
that is typically hard to prove.

3. THE MODELS

(a) Genetic model with heterozygote inferiority:
a system with fixation

This model examines selection at a single diallelic
locus in a spatially extended population. The alle-
les are labelled a and A and their fitness is fixed
with heterozygote inferiority. The population exists
on a two-dimensional square lattice and we denote
the proportion of alleles a in cell (i, j) by pij . If the
members of each cell are allowed to mate randomly
within the cell and also with the four nearest neigh-
bours, then at the next generation p′ij is given by
equation (2) above.

In equation (2)

Σij =
1
5

∑
(k,l)∈Nhd(i,j)

pkl.

Nhd is the five-cell von Neumann neighbourhood and
α, β and γ are, respectively, the fitnesses of aa, aA
and AA. This model is the spatial equivalent of stan-
dard simple genetic competition models with cou-
pling between local sites. Equation (2) is simplified
by dividing through by β and setting

A =
α− β
β

, B =
γ − β
β

.

The condition A = B means that both homozygote
genotypes have equal fitness, and so the system is
symmetric with respect to switching a and A.

(b) Plant competition model: a system with
statistical fixation

Competition between annual and perennial plants
is modelled using a two-dimensional coupled map lat-
tice. Only a single plant may grow in each site of the
lattice and the variable mi,j records the plant mass.
The model is described in detail in Hendry et al.
(1996), but can be summarized as follows. Within
season growth is given by

dmi,j

dt
= g(ai,j − li,j)− bm2

i,j

ai,j = cm
2/3
i,j .

g is the intrinsic growth rate, ai,j is the space re-
quired by the plant at (i, j), li,j is the space lost
to competing neighbours and b and c are constants.
The second equation describes the self-thinning rule.
Competition is asymmetric, so that a disputed area
where two plants overlap goes to the larger plant.
As in the previous model the neighbourhood is the
five-cell (von Neumann) type.

The behaviour of the plants at the end of each year
is based on the cellular automaton model of Craw-
ley & May (1987). At the end of the growing season
all of the annual plants produce seeds, in numbers
proportional to their sizes, and die. The seeds are
distributed normally so that the the expected dis-
placement from the parent plant is
√

2Ps

(Ps − 1)2 .

This is an increasing function of Ps, and for Ps = 1
the seeds are randomly scattered over the whole grid.
The perennials propagate vegetatively by ramets de-
pending on the total mass in the four neighbour-
ing cells. At the end of each year there is a small
probability of perennial death. The perennial ramets
are assumed to have complete competitive advantage
over the annual seedlings at the reproduction stage
(i.e. seeds from annuals are only able to grow in any
cells that remain uncolonized). Thus the surviving
perennials, new perennial ramets and the new an-
nual seedlings together contribute to the initial con-
ditions for the following year’s growth, controlled by
the given differential equation.

For this system measurements are made at the end
of each growing season, recording the mass and type
of each plant.

(c) Multispecies marine ecosystem: a system with
complex statistics

This model is an artificial ecology (Rand & Wilson
1995) where sea otters and urchins move over a back-
ground of kelp and microalgae. The otter searches
for urchins which are a key food source; if it has re-
cently fed (within the last five iterations), an otter
may breed, but if it has been deprived of food for too
long (over 30 iterations) it dies.

The urchins can eat either kelp or microalgae,
but will only resort to eating algae when there has
been no kelp available for nine iterations. Reproduc-
tion and death of urchins again depends upon when
food was last consumed (reproduction only occurring
within two iterations and death after 10 iterations
since the last meal).

Both algae and kelp grow over bare substrate, but
the algae does so far faster; the probabilities for colo-
nizing an adjacent site are 0.2 and 0.01, respectively.
Kelp however can invade areas covered by algae more
rapidly than areas of bare substrate (with probability
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(a) (b)

Figure 1. An example of the final state spatial pattern from a 200×200 lattice of the genetic model with (a) A = B = 0.1
and (b) A = B = 100.
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Figure 2. Fluctuation diagrams for the genetic model: (a) A = B = 0.1 and (b) A = B = 100. (c) The correlations
decay exponentially fast for both sets of parameters. The solid line is for A = B = 0.1, the dashed line A = B = 100.

0.05). Predation occurs when two creatures occupy
the same site; movement and growth are to the near-
est four cells although otters can ‘sense’ urchins from
a distance of two cells and move towards them.

In general the system can be summarized as fol-
lows, algae is a good colonizer but kelp is a better
competitor, although large beds of kelp are more
readily consumed by urchins, which in turn fall prey
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to otters. It is this existence of multiple feed backs
that lead to the complex dynamics of this system.
This model is discussed in more detail in McGlade
(1995).

4. RESULTS AND DISCUSSION

(a) Genetic model with heterozygote inferiority:
a system with fixation

The numerical simulations show that this system
tends to a fixed spatial pattern, which is highly de-
pendent on the initial conditions. The transients are
fairly rapid and after only 200 iterations convergence
to the attractor has been achieved. The system was
always started with uniformly distributed random
initial conditions; however, if the initial conditions
are biased or if A 6= B then the size of the patches is
similarly biased, or in extreme cases one allele may
become extinct.

When the general spatial pattern of the system is
examined for two widely different values (A = B =
0.1 and A = B = 100), it is seen that smaller param-
eter values give rise to larger structures and therefore
a larger length scale (figure 1). When A = B = 0.1
there is only a slight advantage in being homozygote,
and as might be expected the homogeneous patches
are large and the boundaries between the regions are
wide and diffuse. When A and B are increased to 100
there is a huge selective pressure towards being ho-
mozygote hence the boundaries become smaller (of
the order of one site) and sharper. This in turn leads
to smaller patches being stable so that the length
scale is smaller. Although this qualitative result is
immediate from observation, a more quantitative an-
swer can be found using our technique. As this is
an equilibrium system, E` was averaged over several
hundred simulations (as opposed to iterations) for
improved numerical accuracy. Plotting X` against `
(figure 2) the coherence length is easily identified. For
A = B = 0.1, the length scale is about 40× 40 cells,
whereas for A = B = 100 the scale has decreased to
about 18×18 cells. The fluctuation diagram shows an
increase in X` before it settles to a constant, which
indicates an increase in aggregation until `c, with the
larger patches and therefore more aggregated distri-
bution of the first simulation producing higher values
of X`.

It can be checked that this coupled map lattice
satisfies the conditions for FKG when A = B (see
Appendix 3) and we have shown numerically that the
correlation between two sites decays exponentially
with their separation (figure 2c). Together these two
conditions are all that is necessary for the central
limit theorem to hold, hence our assumption that X`

tends to a constant is justified.

(b) Plant competition model: a system with
statistical fixation

Figure 3 shows a typical plant distribution after
100 years for a 100 × 100 grid, for the case where

Figure 3. Example of the plant competition model: spatial
pattern of a mixed population after 100 years. Dark cells
are perennials, grey cells are annuals and light cells are
empty.

perennial mortality is zero and Ps = 0.7. The fluc-
tuation analysis was carried out over a 50 yr period,
allowing 50 yr for transient behaviour. Plotting fluc-
tuation diagrams for two values of Ps and separate
communities of annuals and perennials (figure 4), it
is clear that the asymptotic fit is not as close as in the
previous example as the sample size is much smaller,
and there are strong stochastic elements present in
each season.

For figure 4a, Ps = 0.7 and hence the seeds tend
to be scattered over a fairly large distance, approxi-
mately 11 cells. For figure 4b Ps has been reduced to
0.3 and this in turn reduces the scattering distance
to less than one cell. Both simulations display a sim-
ilar coherence length scale of approximately 130, but
whereas for the genetic model X` was monotonic, for
this system the behaviour is more complex. There is
strong aggregation for windows of less than 100 cells,
but above 130 cells X` returns close to the value of
X1. This means that we should observe large patchy
behaviour in windows of around 50–100 cells but at
larger sizes there is a regularity about the distribu-
tion of patches which reduces X`. It can be seen that
in figure 4a the greater dispersal of the annuals leads
to a more even distribution of this species which in
turn produces smaller fluctuations than are observed
in figure 4b.

Figures 4c, d are for communities composed solely
of annuals and perennials, respectively. Perennials
are less aggregated than annuals at the larger scales.
Perennials propagate by ramets and due to this lo-
calized spread are subject to intense intraspecific
competition. This leads to very little aggregation
with disaggregation predominating at lengths above
40 cells. Annuals on the other hand spread over a
larger area experiencing less competition and there-
fore demonstrating higher levels of aggregation.
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Figure 4. Fluctuation diagrams for a 192×192 plant coupled map lattice: (a) mixed population for Ps = 0.7; (b) mixed
population for P = 0.3; (c) annual plants only (P = 0.7); (d) perennial plants only.

Figure 5. Example of the complex marine system: black
is urchins, dark grey is microalgae, medium grey is otters,
light grey is kelp and white is empty.

This example not only demonstrates that the
length scales technique agrees with our intuitions
about the degree of aggregation, but that the shape
of the fluctuation diagram can tell us a great deal
about the spatial patterns.
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E
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Figure 7. Fluctuation diagrams for the multispecies ma-
rine ecosystem.

(c) Multispecies marine ecosystem: a system with
complex statistics

In figure 5 we show a snapshot of the state of the
system. The dynamics of this system are in constant
flux, with the numbers of otters, urchins, kelp and
algae and the statistical structure of the spatial pat-
terns continually varying, in the sense of Appendix 1.
Because of this, as discussed in § 2, in our calculation
of the fluctuation at each window size we need to uti-

Phil. Trans. R. Soc. Lond. B (1997)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


Characteristic length scales in ecology M. J. Keeling and others 1597

0 40 80 120 160 200
0

10

20

30

Window size

E
rr

or
 X

Figure 8. Fluctuation diagram for the hawk–dove system.

lize nonlinear prediction methods—the value of A` at
the next iteration has to be predicted.

Figure 7 shows the fluctuations at window sizes
from 1–150 cells; the critical length scale is around
95 cells, where the prediction error is around one per-
cent. Figure 6a shows the dynamics at the coherence
length `c by plotting the number of urchins at times t
and t+30. If the fluctuation is simply calculated with
respect to the temporal mean (as for fixation sys-
tems), as opposed to the predicted value, the length
scale is much larger—more than 150 cells. This is be-
cause an average over more cells is necessary to reach
the limiting behaviour of random fluctuations about
a mean value.

Figure 6b shows the first 10 eigenvalues obtained
using singular value decomposition (SVD) analysis.
SVD analysis gives us an independent method to
check that our length scale is the size at which the de-
terministic portion of the dynamics is maximal com-
pared to the noise. The results for grids of size 95 and
150 cells should be compared. It is clear that the first
two eigenvalues are maximal at or close to `c, demon-
strating that at this scale the dynamics are closest to
being given by a deterministic two-dimensional sys-
tem. This gives the evidence that what we are ob-
serving is deterministic behaviour and that at `c the
ratio of noise to the amplitude of the deterministic
dynamics in minimized.

5. FLUCTUATION ANALYSIS AND
MODELLING

In each of the examples considered we have iden-
tified a distinguished length scale, `c. But, how can
this observation help us when we are presented with
a task of modelling a particular ecosystem? We will
indicate numerically that the coherence length scale
is associated with the hydrodynamic limit.

In an illuminating recent paper, Durrett & Levin
(1994b) have described and compared different ways
of modelling ecosystems. The particular system Dur-
rett & Levin have studied is the spatially extended
hawk–dove model. In this model, the interaction of

two species is represented by the game matrix

H D

H a b

D c d

We shall restrict the discussion here to the interact-
ing particle system model based on the above game
matrix, with an addition of rapid diffusion at the dif-
fusion rate µ, and death due to crowding at rate κ
(for the details of this model, see Durrett & Levin
(1994b)). In what follows, we use a = −0.6, b = 0.9,
c = −0.9, d = 0.7, κ = 0.08 and µ = 2.0. The fluc-
tuation analysis for this model is given in figure 8;
X` asymptotes to a constant at a window size of ap-
proximately 80. Durrett & Levin (1994b) show that,
when the averaging window size ε−1 tends to infinity,
and the migration rate is µ = 4ε−2, the asymptotic
behaviour of the density of hawks (u) and doves (v) is
governed by the following reaction–diffusion partial
differential equations:

∂u

∂t
= ∆u

+ u

[
a

(
h+ (1− h)

u

u+ v

)
+ b(1− h)

v

u+ v

]
,

∂v

∂t
= ∆v

+ v

[
d

(
h+ (1− h)

v

u+ v

)
+ c(1− h)

u

u+ v

]
,

(3)

where

h = h(u, v) =
1− e−N(u+v)

N(u+ v)
, (4)

and N is the number of points in the neighbourhood.
The dynamical system obtained from (3) by putting
the spatial derivatives to zero seems to have a glob-
ally attracting fixed point, with all of the trajecto-
ries spiralling towards that point (see figure 9a). Of
course, if ū, v̄ are the densities of hawks and doves at
that fixed point, the reaction–diffusion equation (3)
admits a spatially uniform steady solution given by
these densities. Durrett & Levin (1994b) conjecture
that such a solution is stable.

Note that in most real systems one cannot take
the limit of the infinite system size. Thus arises the
necessity of modelling at an intermediate scale char-
acterized by `c. For simple models, it is possible to
show that, associated with finite size of the window,
and in the limit where the size of the window goes
to infinity, the hydrodynamic fluctuations converge
to a Gaussian field (see e.g. Spohn 1991). Taking
the finite window size, we expect that equations (3)
need to be modified to stochastic partial differential
equations where the variance of the stochastic con-
tribution should scale as Eu`c and Ev`c , with Eu`c , Ev`c
standard deviations for densities of hawks and doves,
respectively.
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Figure 6. (a) The number of urchins at time t against the number at time t+ 30 showing evidence of large scale cycles.
(b) The relative magnitudes of the first 10 eigenvalues (from SVD analysis) at a range of grid sizes.
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Figure 9. (a) Dynamics of the dynamical system associated with the partial differential equation (3). (b) Dynamics of
the hawk–dove system from the interacting particle system averaged over a window of size 75.

In this regime, the trajectory of a stochastic sys-
tem will follow the associated non-stochastic trajec-
tory having the same initial condition. In figure 9b we
present the result of the simulation of the interacting
particle system averaged over a window of size `c. It
seems that, for this simulation, the trajectories of the
dynamical system associated with (3) really serve as
a ‘template’, so that the dynamics can be described
as random jumping between its trajectories.

6. CONCLUSIONS

In this paper we have discussed the problem of
determining the ‘right’ length scale for the observa-
tion of spatially extended problems in ecology. Our
approach relies on averaging: we average the data ob-
tained from the dynamics of the system over domains
(‘windows’) of different sizes. When the window size
is equal to one cell and the system is probabilistic or
deterministic and chaotic, we expect the data-versus-
time plot to have stochastic features. When we take
the averaging window to be the whole system, and
the system is large, the data-versus-time plot is a flat

line (after transients). The question of whether there
is a spatial scale, `c, such that there is interesting
dynamics for data averaged over a window of size `c
was tackled in Rand & Wilson (1995). The answer
depends both on the size and the nature of the sys-
tem. For example, if the system has statistics that are
too simple (systems with unique statistical fixation),
there is no length scale that has interesting dynam-
ics. But, we have shown that even in that case (and
in the even simpler case of systems with fixation) in-
teresting biological conclusions can be drawn from
the fluctuation diagram. For example, the issues of
aggregation and disaggregation have been shown to
correspond to increases and decreases, respectively,
in the graph of the fluctuation X` as a function of the
window size `. When there exists a length scale with
interesting dynamics, we have proposed an approach
that takes account of the non-trivial deterministic
dynamics. We identify the appropriate length scale
by using nonlinear prediction methods for the aver-
aged data, rather than using the global mean.

In cases, such as this, when presenting a new
method for data analysis, based on assumptions
about the statistical nature of the system, it is use-
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ful to identify the cases in which the approach can be
rigorously justified. We have pointed out that when
the invariant measure of the system possesses the so-
called FKG property and a fast decay of correlations,
the assumption on the asymptotic behaviour of fluc-
tuations is justified. Strictly speaking, the procedure
for justifying our assumption on the scaling of the
fluctuations when the size of the window is big is
to establish: (1) the existence of the invariant mea-
sure to which any initial measure converges; (2) the
preservation of FKG property under the dynamics
(see Appendix 2); (3) the decay of correlations for
the invariant measure.

To establish the preservation of FKG inequali-
ties under the dynamics of the system is typically
straightforward. On the other hand, the fast decay of
correlations and the existence of the invariant mea-
sure are difficult to prove. But, the fact that the dy-
namics preserves FKG inequalities can serve as a sign
that the scaling of the fluctuations is as required.
However, the fast decay of correlations can be estab-
lished numerically. For example, the dynamics of the
genetic selection model preserves the FKG inequali-
ties, and we have shown numerically that the corre-
lations decay quickly at the asymptotic state (fixed
point of the system).

It should be pointed out that the existence of
1/`d/2 scaling of the fluctuations for large ` is not
the necessary requirement for our analysis to work.
In particular, the system can exhibit the scaling of
fluctuations of the 1/`γ type, with γ 6= 1

2d. In that
case, the length scale `c can be identified as the scale
at which the scaling regime is attained. Such a scal-
ing is related to limiting distributions that are differ-
ent from Gaussian—the so-called stable distributions
(see e.g. Ibragimov & Linnik 1971).

We have commented in § 5 on the relationship be-
tween the hydrodynamic equations for the hawk–
dove system and the dynamics on the identified co-
herence length scale `c. We have shown numerically
that the simulated trajectory of the system follows
approximately the trajectory obtained from the hy-
drodynamic limit. More work is necessary to put
this observation on rigorous footing. For example,
the variance of the noise could be derived from the
second moment of the local Poissonian distributions
assumed by Durrett & Levin (1994b) and a stochastic
partial differential equation for the evolution of the
densities derived. Even then, the derivation would
be heuristic, due to the complexity of the underlying
mathematical apparatus, just as the original deriva-
tion in Durrett & Levin’s (1994b) paper. To appre-
ciate this complexity and get the information on the
methods and problems arising in the derivation of the
hydrodynamic limits and the analysis of stochastic
partial differential equations the reader can consult
Spohn (1991), De Masi & Presutti (1991), Mueller &
Tribe (1994, 1995) and Tribe (1995).

The applicability of the method of fluctuation
analysis to the analysis of dynamical (i.e. time vary-
ing) data obtained from remote sensing is apparent.
Of course, whether interesting results are to be ob-
tained depends on the size of the sample, as well as

on the dynamics of the observables. In particular,
the system size might be too small to ever achieve
the required scaling limit. In that case we can say
that the data has predominantly stochastic quality.
On the other hand, if the size of the sample is large
enough so that the limit in question is attained, the
appropriate length scale can be identified and deter-
ministic dynamics uncovered.
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APPENDIX 1. SPATIAL STATISTICS AND
INVARIANT MEASURES

Spatially extended systems defined on Zd can ex-
hibit a variety of asymptotic (in time) behaviour. The
simplest of these is convergence to a fixed point of a
system, i.e. to a configuration that is invariant un-
der the dynamics of the system. This is an example
of a deterministic asymptotic behaviour of a system.
Depending on different initial conditions, a system
may tend to different fixed points. Both determin-
istic systems (e.g. the genetic coupled map lattice
that we have studied) and stochastic systems (e.g.
the voter model in one dimension and the contact
process) can possess such a behaviour. We call these
types of models systems with fixation. We shall not
discuss more complex asymptotically deterministic
behaviour such as the limit cycles or strange attrac-
tors, as we do not analyse any systems that exhibit
those.

If the rules of the process are stochastic, in the
infinite time limit the motion of the system can, of
course, still be stochastic. In this case, if the initial
distribution µ is given, the distribution of the sys-
tem may converge to an invariant measure ν. Based
on the properties of this invariant measure we shall
distinguish between two types of systems. In partic-
ular, suppose that this invariant measure is ergodic
with respect to the shift transformation defined by

τix(j) = x(τij) = x(j − i),
where i, j ∈ Zd. Then we call the corresponding pro-
cess a system with statistical fixation. Note that the
shift transformation acts on functions as

τif(x) = f(τix).

For the definition of ergodicity of measures, see
Liggett (1985).

Ergodicity of the invariant measure means that for
any observable f : Zd → R and almost every (i.e.
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∂p′ij
∂pij

=
3
5 (A+ 1) + 1

5 (A+A2)pij + (A+A2)Σij − 1
5 (A+A2)p2

ij − (A+A2)Σij
[2ApijΣij −A(pij +Σij) +A+ 1]2

> 0,

∂p′ij
∂pkl

=
1
10 (A+ 1) + 1

5 (A+A2)pij − 1
5 (A+A2)p2

ij

[2ApijΣij −A(pij +Σij) +A+ 1]2
> 0. (5)

except for a measure zero set in ν) x,

lim
i→∞

1
|{j ∈ Zd : 0 6 j 6 i}|

∑
06j6i

τjf(x) =
∫
f dν.

(6)

where i = {i1, . . . , id}, j = {j1, . . . , jd} ∈ Zd,
and the inequalities are to be interpreted compo-
nent wise. For example, let f(x) = 1 if x0 = 1 and
f(x) = 0 if x0 = 0 for a model with a state space
{0, 1}. In that case, the limit (6) would give us a den-
sity of ‘1’s for a configuration x. For a system with
statistical fixation, this density would be the same
for almost all (with respect to the invariant measure
ν) configurations x.

If the distribution of a system with asymptotically
stochastic behaviour converges to an invariant mea-
sure ν which is non-ergodic, we call such a model a
system with complex statistical structure.

APPENDIX 2. FKG INEQUALITIES

We have mentioned that we can assign a number
xi to each site i determining the state of the system
at that site (e.g. 0 = empty site, 1 = populated site).
We can also order the states. For example, we can
assign 0 > 1 (note that 0 and 1 are only convenient
names here, rather than numbers). In general, we
might be able to assign an order on the state space
S that the xi belong to. Now we can define that a
configuration x = {xi, i ∈ Zd} is larger than another
configuration y = {yi, i ∈ Zd} if xi > yi for every i.
This introduces only a partial order on the space of
all configurations A, as there are pairs of configura-
tions that are not ordered (one configuration being
bigger on some sites, the other configuration being
bigger on other sites). A function f on a configura-
tion is called increasing if x > y implies f(x) > f(y).
For example, global density is an increasing function.
The invariant measure ν is said to be FKG if, for any
two increasing functions f and g,∫
A

fg dν >
∫
A

f dν
∫
A

g dν.

The easiest way to show that an invariant measure
for a coupled map lattice or a probabilistic cellular
automaton satisfies the FKG inequalities is to show
that it preserves the FKG property of measures at ev-
ery time step. A sufficient condition that this holds
(see Mezić 1997) is the monotonicity of the system.
Monotonicity means that if f is an increasing func-
tion, then the expectation (E)xf of f when the sys-
tem is started from a particular configuration x is
an increasing function, too. In contrast with expec-
tations from the complexity of the above definitions,

the monotonicity property is checked quite easily and
directly from the local rules of the system (Mezić
1997). For example, in the case of a coupled map
lattice defined by

xn+1
i = Fi(xn),

where i denotes the site and n the iteration, a neces-
sary and sufficient condition for monotonicity is

∂Fi/∂x
n
k > 0,

for all i and k. Analogous conditions hold for cellu-
lar automata. The first of the models studied (the
genetic model) satisfies these conditions.

APPENDIX 3. FKG INEQUALITY FOR
GENETIC MODEL

The genetic model can be seen to satisfy the mono-
tonicity condition for the FKG property to hold,
see equations (5) in which (k, l) ∈ Nhd(i, j) but
(k, l) 6= (i, j).
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